Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.987
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Molecules ; 29(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474484

ABSTRACT

The determination and evaluation of 16 polycyclic aromatic hydrocarbons (PAHs) in seven Chinese herbal medicines (CHMs) were conducted through a rapid and straightforward extraction and purification method, coupled with GC-MS. A sample-based solid-phase extraction (SPE) pretreatment technique, incorporating isotopic internal standards, was employed for detecting various medicinal parts of CHMs. The assay exhibited linearity within the range of 5 to 500 ng/mL, with linear coefficients (R2) for PAHs exceeding 0.999. The recoveries of spiked standards ranged from 63.37% to 133.12%, with relative standard deviations (RSDs) ranging from 0.75% to 14.54%. The total PAH content varied from 176.906 to 1414.087 µg/kg. Among the 16 PAHs, phenanthrene (Phe) was consistently detected at the highest levels (47.045-168.640 µg/kg). Characteristic ratio analysis indicated that oil, coal, and biomass combustion were the primary sources of PAHs in CHMs. The health risk associated with CHMs was assessed using the lifetime carcinogenic risk approach, revealing potential health risks from the consumption of honeysuckle, while the health risks of consuming Lycium chinense berries were deemed negligible. For the other five CHMs (glycyrrhizae, Coix lacryma, ginseng, lotus seed, seed of Sterculia lychnophora), the health risk from consumption fell within acceptable ranges. Furthermore, sensitivity analyses utilizing Monte Carlo exposure assessment methods identified PAH levels in CHMs as health risk sensitizers. It is crucial to recognize that the consumption of herbal medicines is not a continuous process but entails potential health risks. Hence, the monitoring and risk assessment of PAH residues in CHMs demand careful attention.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Gas Chromatography-Mass Spectrometry , Risk Assessment , Plant Extracts/analysis , China
2.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474613

ABSTRACT

Certain food by-products, including not-good-for-sale apples and pomegranate peels, are rich in bioactive molecules that can be collected and reused in food formulations. Their extracts, rich in pectin and antioxidant compounds, were obtained using hydrodynamic cavitation (HC), a green, efficient, and scalable extraction technique. The extracts were chemically and physically characterized and used in gluten-free and vegan cookie formulations to replace part of the flour and sugar to study whether they can mimic the role of these ingredients. The amount of flour + sugar removed and replaced with extracts was 5% and 10% of the total. Physical (dimensions, color, hardness, moisture content, water activity), chemical (total phenolic content, DPPH radical-scavenging activity), and sensory characteristics of cookie samples were studied. Cookies supplemented with the apple extract were endowed with similar or better characteristics compared to control cookies: high spread ratio, similar color, and similar sensory characteristics. In contrast, the pomegranate peel extract enriched the cookies in antioxidant molecules but significantly changed their physical and sensory characteristics: high hardness value, different color, and a bitter and astringent taste. HC emerged as a feasible technique to enable the biofortification of consumer products at a real scale with extracts from agri-food by-products.


Subject(s)
Flour , Fruit , Humans , Fruit/chemistry , Flour/analysis , Antioxidants/analysis , Sugars/analysis , Vegans , Food Handling/methods , Carbohydrates/analysis , Plant Extracts/analysis
3.
Article in English | MEDLINE | ID: mdl-38442634

ABSTRACT

In this work, a high-speed shear extraction off-line coupling high-speed countercurrent chromatography method was developed to separate maslinic acid and oleanolic acid from olive pomace. To improve extraction efficiency, the polar disparity between maslinic acid and oleanolic acid necessitated the concurrent utilization of both polar and non-polar solvents during high-speed shear extraction. Then, the high-speed shear extraction was directly feed to high-speed countercurrent chromatography for subsequently separation. A total of 250 min were needed to complete the extraction and separation process. This yielded two molecules from 3.3 g of defatted olive pomace: 7.2 mg of 93.8 % pure maslinic acid and 2.3 mg of 90.1 % pure oleanolic acid, both determined by HPLC at 210 nm. Furthermore, the compounds exhibited inhibitory activity against Escherichia coli and Staphylococcus aureus. At a concentration of 100 µg/mL, its efficacy in inhibiting hyaluronidase was comparable to that of the standard drug indomethacin. Compared with the conventional separation method, this coupled technique reduced the whole time due to the direct injection of sample extraction solution. This technique provides a useful approach for the separation of natural products with significant polarity differences.


Subject(s)
Olea , Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Triterpenes , Oleanolic Acid/analysis , Olea/chemistry , Countercurrent Distribution , Anti-Bacterial Agents/pharmacology , Triterpenes/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/analysis
4.
Molecules ; 29(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338301

ABSTRACT

American ginseng, a highly valuable crop in North America, is susceptible to various diseases caused by fungal pathogens, including Alternaria spp., Fusarium spp., and Pestalotiopsis spp. The development of alternative control strategies that use botanicals to control fungal pathogens in American ginseng is desired as it provides multiple benefits. In this study, we isolated and identified three fungal isolates, Alternaria panax, Fusarium sporotrichioides, and Pestalotiopsis nanjingensis, from diseased American ginseng plants. Ethanolic and aqueous extracts from the roots and leaves of goldenseal were prepared, and the major alkaloid constituents were assessed via liquid chromatography-mass spectrometry (LC-MS). Next, the antifungal effects of goldenseal extracts were tested against these three fungal pathogens. Goldenseal root ethanolic extracts exhibited the most potent inhibition against fungal growth, while goldenseal root aqueous extracts and leaf ethanolic extracts showed only moderate inhibition. At 2% (m/v) concentration, goldenseal root ethanolic extracts showed an inhibition rate of 86.0%, 94.9%, and 39.1% against A. panax, F. sporotrichioides, and P. nanjingensis, respectively. The effect of goldenseal root ethanolic extracts on the mycelial morphology of fungal isolates was studied via scanning electron microscopy (SEM). The mycelia of the pathogens treated with the goldenseal root ethanolic extract displayed considerable morphological alterations. This study suggests that goldenseal extracts have the potential to be used as a botanical fungicide to control plant fungal diseases caused by A. panax, F. sporotrichioides, or P. nanjingensis.


Subject(s)
Alkaloids , Hydrastis , Panax , Hydrastis/chemistry , Plant Roots/chemistry , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis
5.
J Ethnopharmacol ; 326: 117884, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38350502

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Opuntia monacantha belongs to the cactus family Cactaceae and is also known by cochineal prickly pear, Barbary fig or drooping prickly pear. It was traditionally used to treat pain and inflammation. O. monacantha cladodes showed pharmacological effects such as antioxidant potential owing to the presence of certain polysaccharides, flavonoids, and phenols. AIM OF THE STUDY: This research aimed to evaluate the anti-inflammatory as well as the anti-arthritic potential of ethanol extract of Opuntia monacantha (E-OM). MATERIALS AND METHODS: In vivo edema in rat paw was triggered by carrageenan and used to evaluate anti-inflammatory activity, while induction of arthritis by Complete Freund's Adjuvant (CFA) rat model was done to measure anti-arthritic potential. In silico studies of the previously High performance liquid chromatography (HPLC) characterized metabolites of ethanol extract was performed by using Discovery Studio 4.5 (Accelrys Inc., San Diego, CA, USA) within active pocket of glutaminase 1 (GLS1) (PDB code: 3VP1; 2.30 Å). RESULTS: EOM, particularly at 750 mg/kg, caused a reduction in the paw edema significantly and decreased arthritic score by 80.58% compared to the diseased group. It revealed significant results when histopathology of ankle joint was examined at 28th day as it reduced inflammation by 18.06%, bone erosion by 15.50%, and pannus formation by 24.65% with respect to the diseased group. It restored the altered blood parameters by 7.56%, 18.47%, and 3.37% for hemoglobin (Hb), white blood count (WBC), and platelets, respectively. It also reduced rheumatoid factor RF by 13.70% with concomitant amelioration in catalase (CAT) and superoxide dismutase (SOD) levels by 19%, and 34.16%, respectively, in comparison to the diseased group. It notably decreased mRNA expression levels of COX-2, IL-6, TNF-α, IL-1, NF-κß and augmented the levels of IL-4 and IL-10 in real time PCR with respect to the diseased group and piroxicam. HPLC analysis previously performed showed that phenolic acids and flavonoids are present in E-OM. Molecular docking studies displayed pronounced inhibitory potential of these compounds towards glutaminase 1 (GLS1), approaching and even exceeding piroxicam. CONCLUSIONS: Thus, Opuntia monacantha could be a promising agent to manage inflammation and arthritis and could be incorporated into pharmaceuticals.


Subject(s)
Arthritis, Experimental , Opuntia , Rats , Animals , Cytokines/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Glutaminase , Piroxicam/therapeutic use , Molecular Docking Simulation , Rats, Sprague-Dawley , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ethanol/chemistry , Inflammation/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Flavonoids/therapeutic use
6.
Nutrients ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398890

ABSTRACT

The utilization of food as a therapeutic measure for various ailments has been a prevalent practice throughout history and across different cultures. This is exemplified in societies where substances like Hibiscus sabdariffa have been employed to manage health conditions like hypertension and elevated blood glucose levels. The inherent bioactive compounds found in this plant, namely, delphinidin-3-sambubioside (DS3), quercetin (QRC), and hibiscus acid (HA), have been linked to various health benefits. Despite receiving individual attention, the specific molecular targets for these compounds remain unclear. In this study, computational analysis was conducted using bioinformatics tools such as Swiss Target Prediction, ShinnyGo 0.77, KEGG, and Stringdb to identify the molecular targets, pathways, and hub genes. Supplementary results were obtained through a thorough literature search in PubMed. DS3 analysis revealed potential genetic alterations related to the metabolism of nitrogen and glucose, inflammation, angiogenesis, and cell proliferation, particularly impacting the PI3K-AKT signaling pathway. QRC analysis demonstrated interconnected targets spanning multiple pathways, with some overlap with DS3 analysis and a particular focus on pathways related to cancer. HA analysis revealed distinct targets, especially those associated with pathways related to the nervous system. These findings emphasize the necessity for focused research on the molecular effects of DS3, QRC, and HA, thereby providing valuable insights into potential therapeutic pathways.


Subject(s)
Anthocyanins , Citrates , Hibiscus , Quercetin , Humans , Plant Extracts/pharmacology , Plant Extracts/analysis , Phosphatidylinositol 3-Kinases
7.
J Ethnopharmacol ; 325: 117842, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38310987

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Wild. Ex Delilie is a shrub with significant ethnomedicinal stature. Therefore, in the undertaken study, its wound healing attributes are determined. AIM OF THE STUDY: The current study provided evidence of the traditional use of A. nilotica species and conferred A. nilotica bark extract as a potent candidate for wound healing agents. MATERIALS & METHODS: A. nilotica leaves extract (ANL-E); A. nilotica bark extract (ANB-E), and A. nilotica stem extract (ANS-E) were prepared using methanol-chloroform (1:1). Phytochemical analysis was performed using gallic acid equivalent (GAE) total phenolic content (TPC), quercetin equivalent (QE) total flavonoid content (TFC) assays and High-performance liquid chromatography (HPLC). In vitro antioxidant potential (free radical scavenging activity (FRSA), total antioxidant capacity (TAC), and ferric reducing antioxidant power (FRAP) assay), antibacterial activity (broth microdilution method) and hemolytic analysis was carried out. Wound healing proficiency of ANB-E was determined by wound excision model followed by estimating hydroxyproline content and endogenous antioxidant markers. RESULTS: Maximum phenolic and flavonoid content were depicted by ANB-E i.e., 50.9 ± 0.34 µg gallic acid equivalent/mg extract and 28.7 ± 0.13 µg quercetin equivalent/mg extract, respectively. HPLC analysis unraveled the presence of a significant amount of catechin in ANL-E, ANB-E and ANS-E (54.66 ± 0.02, 44.9 ± 0.004 and 31.36 ± 0.02 µg/mg extract) respectively. Highest percent free radical scavenging activity, total antioxidant capacity, and ferric reducing action power (i.e., 93.3 ± 0.42 %, 222.10 ± 0.76, and 222.86 ± 0.54 µg ascorbic acid equivalent/mg extract) were exhibited by ANB-E. Maximum antibacterial potential against Staphylococcus aureus was exhibited by ANB-E (MIC 12.5 µg/ml). Two of the extracts i.e., ANL-E and ANB-E were found biocompatible with less than 5 % hemolytic potential. Based upon findings of in vitro analysis, ANB-E (10, 5, and 2.5 % w/w, C1, C2, and C3, respectively) was selected for evaluating its in vivo wound healing potential. Maximum contraction of wound area and fastest epithelization i.e., 98 ± 0.05 % and 11.2 ± 1.00 (day) was exhibited by C1. Maximum hydroxyproline content, glutathione, catalase, and peroxidase were demonstrated by C1 i.e., 15.9 ± 0.52 µg/mg, 9.3 ± 0.17 mmol/mg, 7.2 ± 0.17 and 6.2 ± 0.14 U/mg, respectively. Maximal curbed lipid peroxidation i.e., 0.7 ± 0.15 mmol/mg was also depicted by C1. CONCLUSIONS: In a nutshell, the current investigation endorsed the wound healing potential of ANB-E suggesting it to be an excellent candidate for future studies.


Subject(s)
Acacia , Antioxidants , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Acacia/chemistry , Quercetin , Hydroxyproline , Gallic Acid , Anti-Bacterial Agents/pharmacology , Flavonoids/pharmacology , Flavonoids/analysis , Free Radicals
8.
J Ethnopharmacol ; 325: 117914, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38360381

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional uses of Morus alba L. leaf extracts (MLE) have been reported for treating hyperglycaemia and diabetes. Phytochemical compounds in the leaves demonstrated the ability to enhance insulin sensitivity and ß-cell secretory function, suggesting their potential value in reducing blood glucose and treating diabetes. However, the phytochemical constituents and safety of the herbal medicines need to be verified in each experimental field from different growing areas. Studies on the phytochemistry and toxicity of Morus alba leaves in Southeast Asia, especially in Brunei, have never been investigated. AIM OF THE STUDY: This study aimed to investigate the bioactivity and phytochemistry of Morus alba ethanolic leaf extract from Brunei Darussalam and its subacute toxic effects in the Institute of Cancer Research (ICR) female mice. MATERIALS AND METHODS: The phenolic yield and antioxidant of the extract were analysed. Meanwhile, liquid chromatography-mass spectrometry and high-performance liquid chromatography were utilised to determine the phenolic compound of the MLE. In the subacute toxicity study, twenty-five female mice were randomly divided into five groups: the control group, which received oral gavage of 5% dimethyl sulfoxide solvent (DMSO), and the MLE treatment group, which received the extract at a dose of 125, 250, 500 and 1000 mg/kg. Physiology, haematology, biochemistry, and histology were evaluated during the study. RESULTS: Morus alba leaf depicted total phenolic 10.93 mg gallic acid equivalents (GAE)/g dry weight (DW), flavonoid 256.67 mg quercetin equivalents (QE)/g DW, and antioxidant bioactivity content of 602.03 IC50 µg/mL and 13.21 mg Fe2+/g DW. Twenty compounds in the Morus alba ethanolic leaf extract were identified, with chlorogenic acid (305.60 mg/100 g DW) as the primary compound. As for subacute toxicity in this study, neither mortality nor haematological changes were observed. On the other hand, administration of 500 and 1000 mg/kg MLE resulted in mild hepatocellular injury, as indicated by a significant (p < 0.05) increase in liver enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The histopathological score showed mild hepatocellular necrosis in administering 250, 500, and 1000 mg/kg of MLE. The parameters of renal injury were within normal limits, with the increase in eosinophilic cytoplasm observed in the histological scoring at 1000 mg/kg of MLE. CONCLUSIONS: Morus alba leaf extract showed abundant polyphenols. In a study on subacute toxicity, MLE caused mild hepatotoxicity in mice. The toxic effect of the extract may be due to kaempferol and chlorogenic acid compounds. The 125 mg/kg MLE dose was safe with no adverse effects.


Subject(s)
Diabetes Mellitus , Morus , Mice , Female , Animals , Plant Extracts/toxicity , Plant Extracts/analysis , Antioxidants , Chlorogenic Acid , Morus/chemistry , Ethanol/chemistry , Phenols , Phytochemicals/toxicity , Phytochemicals/analysis , Plant Leaves/chemistry
9.
J Oral Biosci ; 66(1): 179-187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278302

ABSTRACT

OBJECTIVES: Medicinal herbs are plants with potential medicinal and health benefits. In recent years, they are being increasingly used as a treatment alternative owing to their effectiveness against various diseases. In this study, we investigated the inhibitory effects of 15 medicinal herbs on causative bacteria for dental caries and periodontal disease. METHODS: This study evaluated the effects of the extracts of 15 medicinal herbs on growth and biofilm formation in five oral pathogenic bacterial strains. The herbs were processed into extracts, and bacterial strains were cultured. Then, bacterial growth and biofilm formation were assessed using various methods. Finally, the extract of the herb Hibiscus sabdariffa (hibiscus) was analyzed using high-performance liquid chromatography. RESULTS: Incubation of bacteria with the herbal extracts showed that hibiscus exerted a significant inhibitory effect on all the oral pathogenic bacterial strains evaluated in this study. In addition, the pigment delphinidin-3-sambubioside, which is found in hibiscus extract, was identified as a particularly important inhibitory component. CONCLUSIONS: These results lay the ground work for the potential development of novel therapeutic or preventive agents against dental caries and periodontal disease, two major oral diseases.


Subject(s)
Dental Caries , Hibiscus , Periodontal Diseases , Plants, Medicinal , Humans , Plant Extracts/pharmacology , Plant Extracts/analysis , Plant Extracts/chemistry , Hibiscus/chemistry , Dental Caries/drug therapy , Dental Caries/prevention & control , Bacteria , Periodontal Diseases/drug therapy , Periodontal Diseases/prevention & control
10.
J Food Sci ; 89(2): 1114-1126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161280

ABSTRACT

Papaya postharvest management using low-temperature storage is discouraged as it is a tropical fruit. Extensive research is going on to preserve papaya quality at ambient storage using edible coatings and its composites. The present investigation examined the effects of an eco-safe composite edible coating consisting of hydrocolloid carboxymethyl cellulose (CMC) (1%), guar gum (1.5%), xanthan gum (0.3%), and Gum Arabic (10%) combined with papaya leaf extract (PLE) (1:1 ratio by volume) applied as dip treatment on "Red Lady" papaya fruit at ambient storage condition. Among all the attempted treatments, "PLE incorporated with CMC (1%)" was found to be the best, as the treated fruit exhibited the highest levels of biochemicals, whereas the lowest levels of physiological and enzymatic activity, which positively affected the shelf life. The "CMC + PLE" treatment enhanced the fruit gloss score by 70.1%, phenolics by 6.1%, ascorbic acid by 22.3%, total carotenoid content by 7.4%, and fruit predilection score by 22.0% over the control fruit. However, it lowered (controlling) the physiological loss in weight by 51.0%, decay incidence by 66.6%, and polygalacturonase and pectin methylesterase activity by 24.92% and 35.29%, respectively, over control. Moreover, this treatment exhibited the highest fruit purchase predilection score and prolonged the storage life for >3 days on the physiological loss standard basis (≤10%). This study indicates that "CMC (1%) with PLE (1:1)" composite coating application on papaya under ambient conditions might be an effective, environmentally friendly, and health-friendly way to retain the quality and extend the storage life.


Subject(s)
Carica , Edible Films , Humans , Food Preservation , Fruit/chemistry , Plant Extracts/analysis
11.
J Complement Integr Med ; 21(1): 26-37, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38180845

ABSTRACT

OBJECTIVES: Nigeria ranks second in the global prevalence of diarrhoea with most cases concentrated in the Northern-region of the country. This research explored the antidiarrhoeal efficacy of the hydroethanolic extract of Piliostigma thonningii leaves (HEPTL), locally used to manage diarrhoeal conditions in Kebbi State, Nigeria. METHODS: P. thonningii leaves were screened for their secondary metabolites and mineral constituents. Using 3 standard-diarrhoea models, female Wistar rats completely-randomised into six-groups of six animals each were utilised for probing the antidiarrhoeal activity of HEPTL. Animals in groups I and II served as the negative and positive controls, whereas the rats in groups III, IV and V respectively received 50, 100, and 200 mg/kg body weight-(bw) of HEPTL. RESULTS: Six secondary metabolites and eight minerals were found in the extract, with flavonoids and calcium being the most abundant while steroids and zinc were the least prevalent, respectively. High performance liquid chromatographic analysis revealed the presence of 19 bioactive substances. Furthermore, there was a significant (p<0.05) and dose-related reduction in diarrhoea onset, water content, and wet faeces count. Similarly, the amount of intestinal fluid and average distance traversed by the charcoal-meal were decreased dose-dependently by the HEPTL with a commensurate rise in the suppression of intestinal fluid accrual and peristalsis. Acetylcholinesterase, Na+/K+-ATPase, reduced glutathione, intestinal-alkaline phosphatase and protein levels increased significantly (p<0.05) whereas superoxide-dismutase, catalase, intestinal-nitric oxide and malondialdehyde levels all fell significantly (p<0.05). However, the level of intestinal glucose was not significantly altered. CONCLUSIONS: Overall, the HEPTL exhibited a profound effect in the alleviation of the severity of diarrhoea, notably at 200 mg/kg bw.


Subject(s)
Antidiarrheals , Fabaceae , Rats , Female , Animals , Rats, Wistar , Antidiarrheals/pharmacology , Antidiarrheals/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/analysis , Phytotherapy , Acetylcholinesterase , Castor Oil/analysis , Castor Oil/therapeutic use , Diarrhea/drug therapy , Fabaceae/chemistry , Plant Leaves/chemistry
12.
Anal Methods ; 16(8): 1158-1174, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38189175

ABSTRACT

The growing interest in health and well-being has spurred the evolution of functional foods, which provide enhanced health benefits beyond basic nutrition. Guaraná seeds (Paullinia cupana) have been widely studied and used as a functional food due to their richness in caffeine, phenolic compounds, amino acids, and other nutrients. This has established guaraná as a significant food supplement, with Brazil being the largest producer of the world. This study aims to propose a set of analytical methods to chemically evaluate fifty-six different guaraná clones, from the Guaraná Germplasm Active Bank, to accommodate the diverse requirements of the food industry. Metabolomic approaches were employed, in which a non-target metabolomic analysis via UPLC-QTOF-MSE led to the annotation of nineteen specialized metabolites. Furthermore, targeted metabolomics was also used, leading to the identification and quantification of metabolites by NMR. The extensive data generated were subjected to multivariate analysis, elucidating the similarities and differences between the evaluated guaraná seeds, particularly concerning the varying concentration levels of the metabolites. The metabolomics approach based on the combination of UPLC-QTOF-MSE, NMR and chemometric tools provided sensitivity, precision and accuracy to establish the chemical profiles of guaraná seeds. In conclusion, evaluating and determining the metabolic specificities of different guarana clones allow for their application in the development of products with different levels of specific metabolites, such as caffeine. This caters to various purposes within the food industry. Moreover, the recognized pharmacological properties of the annotated specialized metabolites affirm the use of guarana clones as an excellent nutritional source.


Subject(s)
Caffeine , Paullinia , Caffeine/analysis , Caffeine/metabolism , Paullinia/chemistry , Paullinia/metabolism , Chromatography, High Pressure Liquid , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Seeds/metabolism
13.
Nat Prod Res ; 38(4): 563-580, 2024.
Article in English | MEDLINE | ID: mdl-38285923

ABSTRACT

Phytochemicals have become significantly important for scientific research since these possess incredibly remarkable health benefits, especially antioxidant potential to scavenge free radicals and combat the harmful effects of oxidative stress caused by adverse environmental factors. The efficacy and quantity of these phytochemicals relies upon numerous factors including the extraction method, solvent polarity and the habitat features in which the plant is growing. In this study we emphasized on phytochemical analysis and antioxidant activity of Bistorta amplexicaulis, an important medicinal plant species from Kashmir Himalaya. We evaluated antioxidant activity using different assays from all the selected sites to enumerate the impact of habitat. The sites were selected based on varying habitat features and altitude. Our results revealed that Ethyl acetate is the potent solvent for the extraction of phytochemicals. Below ground parts exhibited better scavenging activity than the above ground parts. Amongst the sites, we found the maximum antioxidant potential at Site I. A positive correlation was found between antioxidant activity and altitude while soil attributes (OC, OM, N, P, and K) and most of the morphological traits showed a negative correlation. Overall, our study identified the elite populations that could be utilized for mass propagation and harness the ultimate antioxidant potential of B. amplexicaulis.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/analysis , Altitude , Phytochemicals/pharmacology , Phytochemicals/analysis , Ecosystem , Solvents
14.
J Ethnopharmacol ; 323: 117716, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38190955

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mimosa caesalpiniifolia (Sansão-do-Campo) is a native species of the caatinga in northeastern Brazil that has been studied for its potential anti-inflammatory and antidepressant activity. It is popularly consumed as a medicinal plant and its pharmacological benefits are evidenced in the literature. AIM OF THE STUDY: The present work was carried out to promote the chemical profile and evaluate the pharmacological activity of the dry extract and the ethyl acetate fraction obtained from the dry leaves of Mimosa caesalpiniifolia. MATERIALS AND METHODS: The leaves were collected in the municipality of Alfenas-MG and subjected to drying, followed by division in a knife mill. The preparation of the dry extract was carried out by the extraction method using simple percolation and the fraction was obtained by liquid-liquid partition. Part of the extractive solution was concentrated in a rotary evaporator followed by a drying process using the spray technique with the addition of colloidal silicon dioxide. The dry extract (33.33%) showed a higher yield in mass when compared to the yield of the ethyl acetate fraction (19.67%). The in vivo pharmacological evaluation was conducted with a total of 82 male Wistar rats that underwent cecal ligation and perforation surgery to induce the inflammatory process. One week after surgery, these animals were treated for 7 days with the dry extract and the ethyl acetate fraction and submitted to behavioral tests (open field and forced swimming). RESULTS: The chemical results were obtained through analysis by HPLC-PDA coupled to a mass spectrometer, enabling the verification of the presence of phenolic acids, flavonoids, aglycones, and glycosides, in addition to tannins. This corroborates with data present in the literature for the genus Mimosa sp. Some compounds had their structure determined, where they were identified as catechin (m/z 288.97), cassiaocidentalin A (m/z 560.75), and procyanidin B2 [(epi)catechin-(epi)catechin; m/z 576.83)]. It was found that the animals that were submitted to the treatment did not present statistically significant results, demonstrating that the pharmacological action evaluated in the test was not highlighted in this type of experiment. The groups that underwent treatment had an aggravated locomotor activity. CONCLUSIONS: The results found with the chemical study contributed to the knowledge of the plant species studied. On the other hand, further studies are needed to provide a better understanding of the pharmacological evaluation of Mimosa caesalpiniifolia.


Subject(s)
Acetates , Catechin , Mimosa , Rats , Animals , Rats, Wistar , Mimosa/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Plant Leaves/chemistry
15.
Fitoterapia ; 172: 105745, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967771

ABSTRACT

Hypericum beanii, a traditional folk medicine plant, has been employed in the treatment of various inflammation-related diseases and has demonstrated promising potential as an herbal remedy for cancer. In this study, we isolated 29 compounds from the roots of H. beanii. We evaluated their cytotoxic effects on five human cancer cell lines, which revealed that the ethanol extract, along with compounds 4 and 14, exhibited significant cytotoxic activity. Additionally, we assessed their anti-inflammatory properties by measuring the inhibition of nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages. Our findings showed that the ethanol extract (IC50 = 7.41 ± 0.38 µg/mL), compound 4 (IC50 = 7.82 ± 0.42 µM), and compound 14 (IC50 = 3.05 ± 0.06 µM) displayed substantial anti-inflammatory activity. ELISA assays and qPCR analysis revealed that compounds 4 and 14 may exert their anti-inflammatory and antitumor effects by inhibiting the expression of iNOS, TNF-α, IL-1ß, and IL-6 mRNA, shedding light on their role in cancer-related inflammation.


Subject(s)
Antineoplastic Agents , Hypericum , Neoplasms , Humans , Animals , Mice , Plant Extracts/analysis , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Ethanol/therapeutic use , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , RAW 264.7 Cells , Cytokines/metabolism
16.
Chem Biodivers ; 21(2): e202301596, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38126959

ABSTRACT

Sorbus torminalis (L.) Crantz has a rich history of versatile applications spanning the fields of medicine and nutrition. It is noteworthy that the decoction obtained from S. torminalis leaves is a traditional treatment method against both diabetes and stomach disorders. Phytochemical profiling determined by HPLC/MS-MS. The effects of the extracts on cell viability were investigated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method against MDA-MB-231 cell line (human breast adenocarcinoma).The ethanol/water extract contained more concentration of total phenolic (91.41 mg gallic acid (GAE) equivalent /gr) and flavanoid (29.10 mg rutin (RE) equivalent/gr) in the tested extract (p<0.05). Resulting of HPLC analysis, the chemical constituents varied depending on the solvents and chlorogenic acid, hyperoside, isoquercetin, delphindin-3,5-diglucoside, procyanidin B2, epicatechin, neochlorogenic acid, 3,5-dicaffeoylquinic acid were identified in all extracts. Overall, ethanol, n-hexane and ethyl acetate extracts showed the highest inhibition for the tyrosinase enzyme. The effect of leaf extracts of S. torminalis on antimicrobial, biofilm inhibitory, and anticancer activities was examined. Based on outcomes of our study recognize this plant as a critical source of medically active chemicals for feasible phytopharmaceutical and nutraceutical applications, providing the first scientific insight into the detailed biological and chemical profiles of S. torminalis.


Subject(s)
Sorbus , Humans , Plant Extracts/pharmacology , Plant Extracts/analysis , Flavonoids/pharmacology , Antioxidants/pharmacology , Ethanol , Plant Leaves/chemistry , Phytochemicals/pharmacology
17.
BMC Complement Med Ther ; 23(1): 433, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041080

ABSTRACT

BACKGROUND: Evodia rutaecarpa, a traditional herbal drug, is widely used as an analgesic and antiemetic. Many studies have confirmed that Evodia rutaecarpa has an anticancer effect. Here, our study explored the bioactive ingredients in Evodia rutaecarpa acting on colorectal cancer (CRC) by utilizing network pharmacology. METHODS: We clarified the effective ingredients and corresponding targets of Evodia rutaecarpa. CRC-related genes were obtained from several public databases to extract candidate targets. Candidate targets were used to construct a protein-protein interaction (PPI) network for screening out core targets with topological analysis, and then we selected the core targets and corresponding ingredients for molecular docking. Cell proliferation experiments and enzyme-linked immunosorbent assays (ELISAs) verified the anticancer effect of the bioactive ingredients and the results of molecular docking. RESULTS: Our study obtained a total of 24 bioactive ingredients and 100 candidate targets after intersecting ingredient-related targets and CRC-related genes, and finally, 10 genes-TNF, MAPK1, TP53, AKT1, RELA, RB1, ESR1, JUN, CCND1 and MYC-were screened out as core targets. In vitro experiments suggested that rutaecarpine excelled isorhamnetin, evodiamine and quercetin in the inhibition of CRC cells and the release of TNF-α was altered with the concentrations of rutaecarpine. Molecular docking showed that rutaecarpine could effectively bind with TNF-α. CONCLUSION: The pairs of ingredients-targets in Evodia rutaecarpa acted on CRC were excavated. Rutaecarpine as a bioactive ingredient of Evodia rutaecarpamight effectively inhibit the proliferation of CRC cells by suppressing TNF-α.


Subject(s)
Colorectal Neoplasms , Evodia , Plant Extracts/pharmacology , Plant Extracts/analysis , Tumor Necrosis Factor-alpha , Molecular Docking Simulation , Network Pharmacology , Colorectal Neoplasms/drug therapy
18.
Braz J Biol ; 83: e275733, 2023.
Article in English | MEDLINE | ID: mdl-38055580

ABSTRACT

Parkia platycephala is the only species of the genus Parkia that is endemic to the brazilian Cerrado and the tree symbol of the state of Tocantins, but there are still few studies regarding its bioprospecting. In this study, we aimed to investigate the phytochemical composition, toxicity and bioactivities of the bark and flower of Parkia platycephala. Hot sequential extractions (Soxhlet) were performed using methanol and hydroethanolic solution (70%), after degreasing the sample (hexane). The presence of flavonoids, tannins, steroids and alkaloids was detected in the preliminary screening. Trilinolein, (Z)-9-octadecenamide, 3-O-methyl-d-glucose were detected by Gas Chromatography coupled to Mass Spectrometry (GC-MS). In the Liquid Chromatography with Diode Array Detector (LC-PDA) analysis, it was detected exclusively ferulic acid (bark) and ellagic acid (flower). The ethanolic extract of the bark (IC50=10.69 ± 0.35 µgmL-1) has an antioxidant potential (DPPH• radical) higher than that of the rutin standard (IC50=15.85 ± 0.08 µgmL-1). All extracts showed excellent anticholinesterase potential (Ellman), with emphasis on the ethanol extract of the flower (IC50 =5.34 ± 0.12 µgmL-1). Regarding toxicity (Artemia salina), the methanolic extract of the bark and the ethanolic extract of the flower presented high and moderate levels, respectively. Such results limit the concentrations of biological activities in this study, however, the antioxidant and anticholinesterase indices fall short of toxicity. The results demonstrated promising antioxidant and anticholinesterase activities of both the bark and the flower of Parkia platycephala.


Subject(s)
Antioxidants , Fabaceae , Antioxidants/pharmacology , Antioxidants/analysis , Plant Extracts/toxicity , Plant Extracts/analysis , Cholinesterase Inhibitors/analysis , Plant Bark/chemistry , Phytochemicals/toxicity , Phytochemicals/analysis , Ethanol/analysis , Flowers
19.
Int J Mol Sci ; 24(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37958868

ABSTRACT

Oxidative stress has been associated with different diseases, and different medicinal plants have been used to treat or prevent this condition. The leaf ethanolic extract (EE) and aqueous extract (AE) from Coccoloba alnifolia have previously been characterized to have antioxidant potential in vitro and in vivo. In this study, we worked with EE and AE and two partition phases, AF (ethyl acetate) and BF (butanol), from AE extract. These extracts and partition phases did not display cytotoxicity. The EE and AE reduced NO production and ROS in all three concentrations tested. Furthermore, it was observed that EE and AE at 500 µg/mL concentration were able to reduce phagocytic activity by 30 and 50%, respectively. A scratch assay using a fibroblast cell line (NHI/3T3) showed that extracts and fractions induced cell migration with 60% wound recovery within 24 h, especially for BF. It was also observed that AF and BF had antioxidant potential in all the assays evaluated. In addition, copper chelation was observed. This activity was previously not detected in AE. The HPLC-DAD analysis showed the presence of phenolic compounds such as p-cumaric acid and vitexin for extracts, while the GNPS annotated the presence of isoorientin, vitexin, kanakugiol, and tryptamine in the BF partition phase. The data presented here demonstrated that the EE, AE, AF, and BF of C. alnifolia have potential immunomodulatory effects, antioxidant effects, as well as in vitro wound healing characteristics, which are important for dynamic inflammation process control.


Subject(s)
Antioxidants , Wound Healing , Antioxidants/pharmacology , Oxidative Stress , Phenols/pharmacology , Cell Line , Plant Extracts/pharmacology , Plant Extracts/analysis , Ethanol/pharmacology , Plant Leaves
20.
J Agric Food Chem ; 71(46): 17543-17553, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948650

ABSTRACT

The Folin-Ciocalteu assay is a reference method for the quantification of total (poly)phenols in food. This review explains the fundamental mechanism of the redox reaction on which the method is based and looks at some of the practical considerations concerning its application. To accurately estimate the antioxidant capacity of (poly)phenolic compounds, a thorough knowledge of their structural characteristics is essential, as the two are closely associated. Therefore, to help researchers interpret the results of the Folin-Ciocalteu method, this review also summarizes some of the main phenolic structural features. Finally, we have used the Folin-Ciocalteu method to estimate the total phenolic intake associated with high adherence to a Mediterranean diet, ranked as one of the healthiest dietary patterns, which is characterized by a high consumption of (poly)phenol-rich food such as wine, virgin olive oil, fruits, vegetables, whole grains, nuts, and legumes.


Subject(s)
Phenol , Phenols , Phenol/analysis , Phenols/chemistry , Plant Extracts/analysis , Olive Oil/analysis , Fruit/chemistry , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL